

A Rally Software Development Corporation Whitepaper

Agile Software Development with Verification and Validation in
High Assurance and Regulated Environments

By Dean Leffingwell

Abstract: In the last decade or so, Agile software development methods have proven their worth in a
variety of industry settings, delivering faster time to market, increased productivity, higher quality, and
improved morale and motivation. Traditionally, however, these methods have not been applied to high
assurance and regulated environments, those industries where the economic or human cost of errors is
unacceptably high. There, enterprises have relied primarily on sequential, stage-gated, waterfall methods,
often meeting verification and validation requirements via burdensome documentation and labor
intensive, and potentially error prone, manual processes. However, many such enterprises have concluded
that in order to achieve the next level of product quality and safety improvements, not to mention
enhanced competitiveness, adoption of a more agile approach is required. In this whitepaper, the author
describes an Agile software development approach for high assurance systems that addresses many of the
challenges found in these environments.

The whitepaper concludes with an appendix that provides some examples of high assurance Agile
tooling automation via Rally Software’s Agile Application Lifecycle Management Platform. I owe a special
thanks to Craig Langenfeld and Yvonne Kish of Rally Software for their substantial contribution to this work,
as well as to the high assurance Agile development practitioners who contributed to the examples.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

1

Contents

Introduction ... 2

Agile Crosses the Chasm to High Assurance Development ... 2

Introduction to Medical Device Exemplar ... 3

Regulations and Guidelines for Medical Device Development ... 3

Regulations .. 4

Guidelines .. 4

Software Verification, Validation, and Traceability ... 5

Software Requirements Specification ... 5

FDA Guidance is for Concurrent Engineering, NOT Waterfall Development .. 6

Scaled Agile Delivery Model .. 8

An Agile, High Assurance Lifecycle Model ... 9

System Intent, Vision and Product Requirements Document ... 10

Iterating and Continuous Verification ... 11

Iterating ... 12

Define|Build|Test Teams .. 13

Agile Requirements Backlog Model... 13

User Stories as Software Requirements Specification .. 14

User Story Verification .. 15

Traceability from User Story to Code .. 15

Traceability from Code to Unit Tests ... 15

Traceability to User Story Acceptance Tests ... 15

User Story Validation ... 16

Validating System Increments ... 16

Validation Sprint Length .. 17

PRD to SRS Traceability.. 17

Testing Features .. 17

Testing Nonfunctional Requirements .. 19

Finalizing Documents... 20

Finalizing Traceability Matrices ... 21

Conclusion ... 21

Bibliography ... 23

About the Author .. 23

About the Primary Contributor ... 24

Appendix .. 25

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

2

Introduction

Over the last two decades, the movement to iterative, and now Agile, development methods has been one of

the most important trends affecting the software industry. In Scaling Software Agility [Leffingwell, 2007]

and Agile Software Requirements [Leffingwell, 2011], I describe how Agile methods left the realm of small

software teams and programs and are now being applied at enterprise scale. As the methods were relatively

new (er) at the time, I highlighted many of the documented benefits, including increases in productivity,

quality, and team morale and job satisfaction. In turn, Agile software enterprises receive the ultimate

beneficial result – improved economic outcomes, higher safety, value, convenience, efficiency, efficacy, and

indeed, better standards of living for society at large – that accrue when we improve on this strange mix of

art, science, and engineering that we call software development.

When it comes to software quality, it comes as no surprise to Agile proponents that, when properly

implemented, Agile development achieves much higher quality than its waterfall predecessor. The tyranny of

the urgent-defect-triage-end-game is largely mitigated. And while we will always need to address defects,

non-conformances and minor user need misfires, with Agile we can focus far more on two primary things: 1)

better understanding user needs, and 2) building software that has quality, including safety and security, as

its organic basis. Given this focus, we now find Agile in another mainstream, those enterprises developing

software for medical equipment, pharmaceutics, avionics, military systems, financial trading systems, and

other high assurance applications. Here, the presence of any material defect may have an unacceptable

human or economic cost.

In this whitepaper, we describe an Agile approach to developing high assurance software systems. As a

baseline, we will explore regulations and guidance associated with the development of medical systems as

regulated by the US FDA and similar international agencies. While this will be our example, many other

high assurance industries have similar regulations and requirements, and most assume the need to verify and

validate our requirements and the resultant software application to be sure that our solution works as, and

only as, intended.

We describe an Agile lifecycle model that supports the business need for constant feedback and risk

identification and mitigation, and lessens the dependencies on abstract, document-oriented milestones. In its

place, we will use working code as the basis for feedback and decision-making. We suggest verification and

validation activities and artifacts that support our need to make sure the system works only and exactly as we

intended, and simultaneously provides traceability mechanisms we need to demonstrate these facts to other

stakeholders, including regulatory bodies. The appendix provides examples, screenshots and explanations for

various reports and artifacts that we can generate using Agile tooling solutions such as Rally Software’s

Agile Lifecycle Management Platform, HP’s Quality Center, and Subversion version control systems.

Agile Crosses the Chasm to High Assurance Development

Before we proceed, it is important to know that there is already substantial evidence of successful adoption

Agile development methods in high assurance industries. For example, in Adopting Agile in an FDA

Regulated Environment [Abbott 2009], Abbot Labs describes how they applied Agile development in the

development of a nucleic acid purification platform in its Molecular Diagnostics business. They also took

the time to compare the Agile method to a similar predecessor project built with prior, waterfall practices.

The conclusions are compelling:

(On the new project): Fewer defects were found…the availability of working software, early on was

a significant factor.

(By comparison to the prior project): We estimate that using an agile approach … would have

resulted in the overall project duration being reduced by 20-30%...a headcount reduction of 20-

30%... and a net cost savings of 35-50%.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

3

(In conclusion): This experience has convinced us that an agile approach is the approach best suited

to development of FDA-regulated devices.

As further evidence of this trend, the Association for the Advancement of Medical Instrumentation (AAMI)

has recently released a Technical Information Report, which provides extensive recommendations for

complying with international standards and FDA guidance documents when using Agile practices to develop

medical device software
1
.

Agile development is also making significant inroads into other high assurance industries, including none

other than the US Department of Defense. David Rico commented on a recent AFEI
2
 DoD Agile

Development Conference dedicated to promoting Agile acquisition and IT development practices:
3

It reinforced the U.S. DoD’s commitment to the use of Agile Methods. Furthermore, it was

interesting to see that Agile Methods are in widespread use by the U.S. DoD, and that no individual

organization, project, group, or person is practicing them in isolation. Prior … both the commercial

industry and DoD contractors believed the U.S. DoD was not committed to Agile Methods, which is

an enormously incorrect assumption…..It’s a popular urban legend that the DoD uses (only)

traditional methods such as DoD 5000, CMMI, PMBoK, and other waterfall-based paradigms to

develop IT-intensive systems. The AFEI DoD Agile Development Conference shattered that myth

completely.

Introduction to Medical Device Exemplar

The domain of high assurance development is extremely broad, and regulations and interpretations vary from

industry to industry. In this whitepaper, we use medical device development under the auspices of the US

Food and Drug Administration as an example regulatory environment. In our experience, the expectations

for practices and compliance in this industry are quite similar to many others, so if we understand this one

instance, then we might be able to understand something about them all. However, the following disclaimer

is appropriate:

Regulatory requirements for software differ from industry to industry, and interpretations and

enforcement practices are constantly changing. Any suggestions provided in this whitepaper do not

constitute legal or regulatory advice. Information in this whitepaper should only be applied by

qualified professionals with direct knowledge of their specific industry.

With that disclaimer out of the way, let’s look at regulations and guidance for development of medical

devices under the auspices of the US FDA.

Regulations and Guidelines for Medical Device Development

Each industry has its own thicket of regulatory bodies and published standards that must first be parsed for

understanding. Figure 1 describes a chain of both regulatory and guidance documents that govern medical

device software development as provided for under the US FDA Code of Federal Regulations (CFR) 21.
4

1 The AAMI Technical Information Report TIR-45: Guidance on the Use of Agile Practices in the Development of Medical Device

Software: Info can be found at http://my.aami.org/store/detail.aspx?id=TIR45-PDF.
2 The Association for Enterprise Information (AFEI). See http://www.afei.org/Pages/default.aspx.
3 See http://davidfrico.com/afei-2010.doc
4 Note: while this post and thread focuses on US FDA Good Manufacturing Practices (GMP) requirements for medical devices, these

requirements are generally harmonized with International Organization for Standards (ISO) 9001:1994 and ISO DIS 13485.

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?cfrpart=312
http://my.aami.org/store/detail.aspx?id=TIR45-PDF

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

4

A summary explanation of these documents is provided in the paragraphs below.

Regulations

In our case, the law starts with the US Code of Federal Regulations (CFR), which is the law of the land in the

U.S. Title 21 of the CFR, is reserved for rules of the Food and Drug Administration (FDA). Here, we find

the following additional “sub” regulations.

CFR 21 Subchapter H – Medical Devices. Covers the general design, manufacture and marketing of

medical devices.

CFR 21 Part 820 Quality System Regulation. Defines specific regulatory requirements for the design

and development of such devices, intended to ensure that finished devices will be safe and effective

and otherwise in compliance with the Federal Food, Drug, and Cosmetic Act.

Quality System Regulation, CFR21 Part 820.30 Subpart C Design Controls. Subpart C specifies the

regulations for device design (including software development in our case). Regulatory requirements

for device verification and validation are included here.

Guidelines

CFR 820.30 is the regulation that covers all medical devices, whether they include software or not. It is

remarkably short (just 2 pages!) and provides lots of leeway to device manufacturers. It is important to note

that this document, at the bottom of the chain, contains all of, and the only specific federal regulations which

govern medical device development.

However, as an aid to FDA staff and the industry, CDRH has published additional guidelines that add

specificity to how these regulations will be interpreted. First, for 820.30, Design Controls, there is the

publication Design Control Guidance for Medical Device Manufacturers, [FDA CDRH 1997]. It is

important to note that these guidelines are just that, guidelines, and they do not have the force of regulation.

However, they do set expectations on the part of the industry and regulators as to how the regulations should

be generally interpreted.

And finally, and more specifically to our context, CDRH has published a document which provides

guidelines for the general principles of software validation, General Principles of Software Validation; Final

Guidance for Industry and FDA Staff, [FDA CDRH 2002].

Figure 1 Regulatory and guidance documents for US medical device development

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

5

Software Verification, Validation, and Traceability

CFR 21 Part 830 Subpart C Design Controls, Paragraphs (f), (g) mandate device design verification and

validation. In General Principles of Software Validation [FDA CDRH 2002], we find:

Software verification provides objective evidence that the design outputs of a particular phase of the

software development life cycle meet all of the specified requirements for that phase. Software

verification looks for consistency, completeness, and correctness of the software and its supporting

documentation, as it is being developed, and provides support for a subsequent conclusion that

software is validated. In other words, verification ensures that “you built it right.”

Software validation is confirmation by examination and provision of objective evidence that

software specifications conform to user needs and intended uses, and that the particular requirements

implemented through software can be consistently fulfilled. Since software is usually part of a larger

hardware system, the validation of software typically includes evidence that all software

requirements have been implemented correctly and completely and are traceable to system

requirements. In other words, validation ensures that “you built the right thing.”

In addition, the guidelines go on to describe traceability and traceability analysis as primary mechanisms to

assure that verification and validation are complete and consistent, and that a traceability matrix is the

documentation record that provides the objective evidence of the completeness of the verification and

validation. For definitions here, we refer to FDA Glossary of Computer Systems Software Development

Terminology
5
:

Traceability. (from IEEE) (1) The degree to which a relationship can be established between two or

more products of the development process, especially products having a predecessor-successor or

master-subordinate relationship to one another; e.g., the degree to which the requirements and design

of a given software component match. (2) The degree to which each element in a software

development product establishes its reason for existing.

Traceability Analysis. (from IEEE) The tracing of (1) Software Requirements Specifications

requirements to system requirements in concept documentation, (2) software design descriptions to

software requirements specifications and software requirements specifications to software design

descriptions, (3) source code to corresponding design specifications and design specifications to

source code. Analyze identified relationships for correctness, consistency, completeness, and

accuracy.

Traceability Matrix. (from IEEE) A matrix that records the relationship between two or more

products; e.g., a matrix that records the relationship between the requirements and the design of a

given software component.

Software Requirements Specification

In addition to these definitions, this document [FDA CDRH 2002] also provides an introduction and

definition to another important artifact:

A documented software requirements specification (SRS) provides a baseline for both validation and

verification. The software validation process cannot be completed without an established software

requirements specification (Ref: 21 CFR 820.3(z) and (aa) and 820.30(f) and (g)).

From the guidance, such a document typically contains:

 All software system inputs, outputs, and functions

 All performance requirements, including throughput, reliability, accuracy, response times (i.e., all

nonfunctional requirements)  

5 see FDA Glossary of Computer Systems Software Development Terminology on line at

http://www.fda.gov/iceci/inspections/inspectionguides/ucm074875.htm

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

6

 Definition of external and user interfaces  

 User interactions

 Operating environments (platforms, operating systems, other applications)  

 All ranges limits, defaults and specific values the software will accept  

 All safety related requirements specifications, features, or functions implemented in software

Clearly, the verification and validation (V&V) aspects of the regulations essentially mandate the creation a

software requirements specification
6
. In contrast, non-high assurance Agile development teams don’t

typically create these in a formal way; instead they use the backlog, collections of user stories and

acceptance criteria, persistent test cases and the code itself (i.e.: with defined templates for auto insertion of

code header information and checkin code comments) to document system behavior. However, in this

context, it is clear that we will need to develop and maintain a software requirements specification, as we

simply cannot do V&V without it. However, the fact that we need such a document doesn’t mandate that we

do it all Big Bang and Up-Front. To be agile, we can and will develop it incrementally with the artifacts

incrementally generated within agile teams. The benefit here on agile teams is that the documentation is

continuously updated with the agile team artifacts, so documentation is not done after the fact.

FDA Guidance is for Concurrent Engineering, NOT Waterfall Development

 [FDA CDRH 2002] (40 pages) provides the most specific guidance applicable to the validation of medical

device software. It is important to note, that neither this document, nor CFR820.30 itself, constrains

development to single pass, stage-gated, waterfall activities.

From General Principles of Software Validation….. [FDA CDRH 2002]: This guidance recommends

an integration of software life cycle management and risk management activities. While this

guidance does not recommend any specific life cycle model or any specific technique or method, it

does recommend that software validation and verification activities be conducted throughout the

entire software life cycle.

From Design Control Guidance for Medical Device Manufacturers [FDA CDRH 1997]: Although

the waterfall model is a useful tool for introducing design controls, its usefulness in practice is

limited… for more complex devices, a concurrent engineering model is more representative of the

design processes in use in the industry.

Even more specifically, IEC62304, (a widely recognized international standard for medical device

software which is largely harmonized with FDA’s interpretation of CFR 820.30) states: … these

activities and tasks may overlap or interact and may be performed iteratively or recursively. It is not

the intent to imply that a waterfall model should be used.

Notwithstanding the above, and whether we are doing high-assurance development or not, it is likely that our

enterprise’s standard approach to software development followed the over-simplified waterfall model. After

all, that’s what most of us have done for years, so why would the high assurance development teams be any

different? To be flippant for a moment, perhaps we headed down this path because it’s simply easier to draw.

Actually, we have done this for years because the linear waterfall SDLC phase gates are so easy to map to

milestones for management and they fit in so neatly with linear management forecasts and budgets for

formal phase gate reviews (i.e., SRR, PDR, CDR, TRR, etc.) as seen in Figure 3 below. For example, in

describing the application of design controls, [FDA CDRH 1997] provides the following diagram.

6 For further description of the contents of an SRS, refer to IEEE Recommended Practice for Software Requirements Specifications

and Managing Software Requirements: A Unified Approach [Leffingwell and Widrig 1997].

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

7

Most readers will recognize Figure 2 as being typical of more generic, traditional waterfall software

development process models, such as that pictured in Figure 3
7
.

In addition, V&V activities are often aligned with a traditional waterfall approach depicted above with the

commonly known V-model depicted in Figure 4 below. In the V-model, each phase of development is

aligned with the type of V&V activities, which heavily includes testing, for each phase.

7 Note to the software historians: Winston Royce’s seminal 1970 article, which initially described the sequential model which came

to be known as the waterfall model, included the following statement “I believe in this concept (analysis before coding etc) , but

the implementation above (a sequential, single pass, reqs-analysis-design-coding-testing) is risky and invites failure.” In other

words, he concluded that the waterfall model, as we often imply today is NOT a recommended model for development.

Figure 3 A traditional waterfall model view of software development

Figure 2 Application of design controls to waterfall design process. From [FDA CDRH 1997] Design Control
Guidance for Medical Device Manufacturers

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

8

Figure 4 A traditional V Model view of software development phases aligned with V&V and testing phases

Such diagrams, familiar to us all, offer some positive attributes, at least on the surface:

 It is seemingly simple and logical (what could be more logical than code following requirements,

and tests following that?)

 In theory, you only have to do “it all” once (especially verification and validation, which can be both

labor intensive, expensive and error prone).

Of course, we know it doesn’t work well that way, and that’s why we strive for agility in the high assurance

markets, just like we do everywhere else. However, for many, the apparently beguiling (but false) simplicity

of the model is one reason that it has made its way into the various governing documents, milestone reviews,

corporate quality standards, etc.

Let us be clear: with respect to this one industry, and with respect to these specific guidelines, any notion

that we are mandated to apply a single-pass, waterfall model to software development is an industry myth,

one which has likely been perpetuated by our own waterfall past (“we have always done it this way”) and

our existing quality management systems, and not because “the regulations make us do it”.

Scaled Agile Framework

As we noted earlier, many enterprises have already moved to a scalable Agile development model. Base don

these experiences in the field, we have evolved a full-fledged, public-facing framework, which can be found

at ScaledAgileFramework.com. The Frameworks “Big Picture” serves as its UI and navigation paradigm, as

Figure 5 illustrates:

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

9

This framework has a number of interesting attributes, many of which we will be able to apply directly to our

high assurance context:

 Software development proceeds in a short series of iterations (or Sprints)

 For requirements, Agile teams work against their local, project backlog, which consists primarily of

user stories that are written just prior to the iteration in which they are implemented

 Teams break stories down into tasks, which is a fine grained work breakdown structure (which we

will put to good use shortly)

 Teams work against a common program backlog, comprised of a set of features which describe the

system intent, or solution Vision

 Periodically, the teams collaborate on a HIP sprint, used to eliminate any remaining technical debt,

perform full system integration and regression testing, and to finalize documentation

 At the end of each HIP sprint, the program has produced a release (or Potentially Shippable

Increment) of the full software asset stack.

An Agile, High Assurance Lifecycle Model

The Agile model above is robust and scalable, and has been successfully applied in a number of industries.

However it does not assume the development of specific requirements documents, nor explicit verification

and validation, so we extend this a bit in the high assurance context. With a nod to the model above and the

Abbot Labs whitepaper [Abbot 2009], and with due respect to the necessary verification and validation

Figure 5 Big Picture of the Scaled Agile Framework.
Source: ScaledAgileFrameowrk.com

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

10

activities, we offer Figure 6 as a model for Agile, iterative and incremental development in high assurance

markets:

In this model, we use a series of short system iterations, each of which defines, builds and verifies some new

and valuable user functionality. Within each iteration, we will define some new requirements and write and

test the code that fulfills them. We will also perform continuous verification, including inherent traceability,

and automate these activities wherever possible.

Periodically (typically after 3-4 iterations) we will run a validation (HIP) iteration to validate a new system

increment, so that we can be assured we still meet the full system requirements, and not just the ones we

have implemented in the most recent iteration. In addition, we will have to conduct a review prior to our

making the system available for testing in the actual usage environment, and eventually, for a full product

release.

System Intent, Vision and Product Requirements Document

Previously, we have described the SRS, which is prescribed by regulatory guidance and is the center for

most software development activities. However, this document does not stand-alone. For most systems,

including systems of systems and devices that contain both hardware and software, the governing document,

which resides above the SRS is usually a Product Requirements Document (we will use the acronym PRD,

but other names, Marketing Requirements Document, System Specification, etc. are used as well). The PRD

contains the complete specifications for the device as a whole.

From the perspective of the market, management and the FDA, the PRD is probably the most critical

document because it describes exactly what the system is intended to do for the users. Keeping the level of

abstraction sufficiently high enough to make sure the document is understandable, and yet specific enough to

drive development is the art of good product definition. The PRD typically contains at least these major

elements:

 statement of device purpose

 system context diagram

Figure 6 An Agile, high assurance lifecycle model

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

11

 descriptions of users and operators

 features of the device

 nonfunctional requirements

 operation and maintenance requirements

 safety features and hazard mitigation

While some of these items are specific to medical devices, guidance for the content of the PRD closely

mimics the generic “Vision” document from the Rational Unified Process and other, similar methods. See

footnote
8
 for additional information.

Since this document describes the intent of the system, it’s just as important as the SRS, and developing and

maintaining this document is a significant program activity. In a fashion similar to the SRS, it may be

developed somewhat incrementally. However, unlike the SRS, which is really a response to system

intentions, much of the content of the PRD will be developed in advance of the bulk of development, as it

states what the device is intended to do.

Fortunately, making the PRD understandable by managing the level of detail, and simultaneously not over

constraining Agile software development with over-specificity are sympatric goals, so keeping the

descriptions high level in the PRD serves both purposes.

In any case, from the standpoint of system behavior, the primary content of the PRD is the set of features

(high-level descriptions of system behavior that addresses a user need) the system provides to deliver its

efficacy and safety. Features can be expressed in user voice form (see later) but are more typically expressed

in a short keyword phrase or sentence. For example, an EPAT
9
 device might include:

Pulse wave frequency is adjustable from 1-21 hertz

Pressure amplitudes can be varied from 1-5 bar

Acoustic energy may be concentrated to a focal area of 2- 8 mm in

diameter

While the PRD makes the “labeling claims” for the device via these features, the actual

work of implementation is left to the software (and hardware, of course) so part of our

verification effort is to assure that every feature traces to one or more user stories (or

other forms of software requirements expression).

The traceability matrix is an important document that will provide the evidence needed for forward and

backward traceability for verification and validation from requirements to test, and completeness of test back

to requirements. It is important to include the product requirements in the traceability matrix for

completeness to show product to software requirements traceability, then to trace through to design, code

and test.

Iterating and Continuous Verification

With this background behind us, we can now move forward with suggestions for how to implement the high

assurance agile lifecycle model illustrated in Figure 5. Thankfully, the bulk of the work is focused on

developing and verifying the actual software that is created to achieve the desired performance of the system

under construction. Most of that is coding and testing activity, which we will approach using rigorous, but

fairly standard Agile development practices including continuous integration, peer review/pair programming,

8 For a more traditional representation, see the Appendix in Managing Software Requirements: First Edition, A Unified Approach

[Leffingwell 1999] towards a more Use Case-driven view in Managing Software Requirements: Second Edition, A Use-Case

Approach [Leffingwell 2003] and a more agile version in Agile Software Requirements: Lean Requirements Practices for Teams,

Programs, and the Enterprise [Leffingwell 2011].
9 Extracorporeal Pulse Activation Therapy Device. (A device that appears to have done wonders for my chronic Achilles tendonitis.)

Figure A 1.1
Feature set
represented in
Rally

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

12

unit testing, Test-Driven Development, automated build and verification systems, coding standards, regular

reviews and retrospectives. We will also keep in mind the need for continuous verification, and we will

automate as much of that as possible using appropriate tooling.

Iterating

The basic pattern in agile development is the iteration (or Sprint in Scrum). Each iteration has a fixed length

(often two weeks) and the pattern for the period is described in Figure 7 below.

During the course of the iteration, teams first plan the iteration, breaking the stories into tasks, and then

commit to completing some number of stories. The team then implements the stories, driving each towards a

definition of done. The definition of done establishes policy for what constitutes story

completion, which assures that the story is properly coded, reviewed, tested and

accepted into the product baseline.

It is very important in a high assurance environment that the definition of done include

all quality, safety, security and regulatory requirements that need to be satisfied for

completeness. Furthermore, the verification and validation for definition of done is

traced through to the acceptance criteria for each user story and then originating the product requirement.

This will ensure that the user story is complete from a customer point of view for functionality, that all non-

functional requirements are satisfied from a system point of view, and that all quality, safety, and security

requirements are complete from a regulatory point of view. A well-defined definition of done attributes to a

proactive preventative approach to quality and risk management.

During the course of the iteration, teams meet daily to discuss progress and address issues. Any potential

risks are identified, tracked and raised as impediments, and risks that have been resolved are reported and

closed. Progress is tracked using burn down charts and iteration status reports.

At the end of the iteration, the team conducts a demo and retrospective. The demo is used to show all

stakeholders the current state of the solution, highlighting the new behaviors implemented in the current

iteration. Thereafter, the teams hold a brief retrospective focusing on what improvements they can make to

the development process in the next iteration. For high assurance teams, risk management and how well

risks were identified and mitigated are always part of the retrospective discussion.

Figure 7 Basic iteration pattern

 A 1.2
Detailed view
of iteration
status.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

13

Define|Build|Test Teams

Doing all this in a short timebox is no trivial feat, and Agile teams are designed specifically to make this

feasible. In Scaling Software Agility [Leffingwell 2007], we described a common Agile team model, based

primarily on Scrum. We called that the Define|Build|Test to make it clear that they must have all these skills

resident with the team. Here, our Define|Build|Test teams consists of:

 A product owner who has the responsibility to define and manage the backlog (upcoming

requirements). In our example, this person must also have the requisite medical domain knowledge

and authority to make critical decisions on the safety and efficacy of the product.

 Developers who implement both the code and unit tests that test the code

 Testers who develop and execute acceptance tests to assure that the system meets its requirements

and that all acceptance criteria has been fully met

 (and most likely in high assurance environments) quality assurance team members who assist with

verification, validation, traceability and other necessary documentation activities to ensure

regulatory standards are met.

 A ScrumMaster who is a facilitator and coaches the team to ensure they are implementing the

scrum process correctly. Also ensures that any impediments reported by the team are quickly

resolved to unblock the team as soon as possible.

We mention the cross-functional team construct here because it is assumed in this model (and in all Agile

development). However, for a high assurance company transitioning from waterfall to Agile development,

we recognize that this step alone may be a big challenge, as it breaks down the functional silos and

reorganizes along value delivery lines. Without this step, real agility cannot likely occur. Also, because this

is how we do what we do, formalization of the team construct may be important enough to be called out in

the company’s quality management system (QMS) practice guidelines.

Agile Requirements Backlog Model

While Agile development is often mis-perceived to be informal and loosely structured, this is just another

myth that inhibits use in serious and scaled development environments. The fact is that Agile is an extremely

disciplined process, and while the terms and artifacts the teams use are different, they are typically based on

a tight semantic model between requirements artifacts such as user stories, and their unit tests and acceptance

tests to assure the stories have been implemented properly. In Agile Software Requirements [Leffingwell

2011], I described a scalable Agile requirements model, which we can now leverage directly in our high

assurance context. Relevant portions of that model appear in Figure 8 below:

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

14

User Stories as Software Requirements Specification

For now, we are primarily concerned with the gray boxes (stories, tasks, story acceptance tests and unit tests)

in this figure. As user stories are the primary form of requirements expression used in Agile, the SRS we

will need will be an as-built compilation of user stories. In this way, the SRS will evolve as the system

evolves.

Each Agile user story is a brief statement of intent that describes

something the system needs to do for the user. Typically, each user

story is expressed in “user voice” form as follows:

As a <role> I can <activity> so that < value>

where:

 Role – represents who is performing the action.

 Activity – represents the action to be performed

 Value – represents the value to the user (often the patient in our exemplar) that results from the

activity.

For example,

As an EPAT (Extracorporeal Pulse Activation Technology)

technician, (<role>) I can adjust the energy delivered (<what I do

with the system>) in increments so as to deliver higher or lower energy pulses to

the patient’s treatment area (<value the patient receives from my action>).

Figure 8 Scalable Agile requirements backlog model

 A 1.3
User Story
detail view

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

15

User Story Verification

User stories are sized such that they can be coded and tested within the course of a single iteration. That way,

when we are done with an iteration, we have assured delivery of some new value. To assure that each new

user story works as intended, we will verify it using three built-in (and semi-automated) traceability paths:

 User Story to code – path to the SCM record that illustrates when and where the code was changed

to achieve the story

 Code to unit test – the path to the unit test is the “white box” test which assures the new code works

to its internal specifications; linkage is maintained via the path to the SCM change set

 User Story to Story Acceptance Tests – the path to black box functional test of the user story

To do this explicitly, we can use a standard Agile tasking model as part of our definition of done for each

new user story, as Figure 9 illustrates. Each task ID (maintained in our Agile project management tooling,

and directly associated with the story) can be used to establish a traceability link to the specific artifact.

Traceability from User Story to Code

This traceability path connects the user story to the code that implements it, via the task

that was used to create the code.

Traceability from Code to Unit Tests

The code itself is tested by the unit tests, which test the methods that were

implemented to fulfill the story.

Traceability to User Story Acceptance Tests

User Story Acceptance Tests (SAT) are functional tests intended to assure that the

implementation of each new user story delivers the intended behavior. SATs are

usually written in the language of the business domain and are developed in a

conversation between the developers, testers, and product owner. They are black box

tests in that they verify only that the outputs of the system meet the conditions of

satisfaction for user story acceptance criteria, without concern for how the result is

achieved. SATs are implemented during the course of the iteration in which the story

Figure 9 Explicit support for traceability to code, unit tests and acceptance tests

 A 1.4
User story to
Code
traceability

 A 1.5
User story to
Story
Acceptance
Test
(Verification
test)

 A 1.6
User story in
Rally to Story
Acceptance
Test in HP
Quality Center

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

16

itself is implemented, as prescribed by the Definition of Done. Traceability occurs via the task connection

from the user story to the story acceptance test. SATs persist in the teams testing repository tooling of

choice. The successful completion of all verification and validation for all user story acceptance criteria is

stored in the repository tooling as objective evidence to meet regulatory requirements.

User Story Validation

In addition, at the end of the iteration, each user story is demonstrated to the product owner and other

stakeholders. This gives these authorities the opportunity to see the new user stories, comment, and if

necessary, define changes for future increments. This provides a first, informal validation that the story

fulfills the requirements as intended.

Validating System Increments

Periodically, we will have to validate our work prior to applying our device in any actual usage setting. In

Figure 6, we illustrated multiple (typically 3 to 4) development iterations (indicated by full backlogs)

followed by a HIP iteration. This pattern is arbitrary but fairly typical as it produces a Potentially Shippable

Increment (PSI) (valuable and evaluate-able in our medical device setting) every 10 weeks or so.

The HIP iteration has an empty backlog, implying no new user stories. Ideally, we could ship our product

every day, so the dedication of time to a hardening period is not ideal from an agile purist standpoint. But

this iteration acknowledges a practical reality: development of the code itself is only part of the job,

especially for systems of complexity, scale, and high cost of failure, so some work that prepares the code for

release can be done efficiently outside a normal development iteration.

Therefore, the HIP sprint is a high value, dedicated time for focusing on some of these remaining activities.

This can include the elimination of accumulated technical debt as well as full regression testing, traceability

updates, and finalizing system documentation. Full validation for a high assurance system is no trivial effort,

and will likely include at least the activities identified in Table 1 below:

System Testing Traceability Documentation

Resolve/close/note outstanding defects Update and finalize all traceability

matrices

Document the results of the

validation

Final integration with other components

and systems

PRD to SRS Update quality systems

documentation

Final regression test of Unit Tests

and Story Acceptance Tests (normally

accomplished in the course of each dev

iteration)

PRD to Feature Acceptance Tests Update, version control and “sign”

PRD

Regression test all Feature Acceptance

tests (same comment as above)

SRS to code Update, version control and “sign”

SRS

Regression test all System Qualities

tests

SRS to Story Acceptance Test Finalize user documentation

Perform any exploratory testing Code to unit tests Release notes and any other user

guidance

Perform any/all user acceptance testing Installation and maintenance

requirements

Perform all internal acceptance

(development, clinical, product

marketing) testing

Table 1 Typical high assurance HIP iteration activities

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

17

Validation Sprint Length

Depending on the levels of test automation and other tooling, accomplishing validation in a single, two-week

iteration may not be practical. In that case, some teams treat this iteration as fixed scope, not fixed length, so

they take the time necessary to do a proper job. However, there is a negative impact to an open-ended time

frame, as we lose the cadence and synchronization that are our primary tools to manage product development

variability [see Reinertsen 2009] and the schedule may become unpredictable.

Instead, it is generally better to have an additional iteration dedicated to this purpose, or perhaps a longer one

than normal. Then, if the teams fail to get the job done, they can always add another iteration for this

purpose, and the “failure” will indicate where they need to invest in additional automation and

documentation tooling, or address whatever other impediments remain. After all, completing critical work in

a quality fashion with attention to identifying and mitigating risks in a short timebox, and working towards

tight, continuous integration is what good Agile teams do.

PRD to SRS Traceability

Since the PRD is the controlling document for what the software implementation needs to do, we will need

to maintain linkage and a traceability reference for the claims for the device (features in the PRD) to how

those claims are implemented in software (User Stories in the SRS) in the form of a traceability matrix.

Figure 10 illustrates such a set of relationships for our hypothetical device.

In this way we can be assured that every feature of the system traces to, or is

implemented by, one or more user stories. If our analysis discovers stories that do not

trace to a feature, that may be OK since all analysis does not always map to a user story,

but we will need to at least understand their purpose to make sure that the system

behaves only as intended. It should be documented why the analysis does not trace.

This particular traceability path also gives us a way to consider the impact of potential

feature level changes, and trace approved features changes into implementation by their children stories.

Testing Features

Earlier, we described the Product Requirements Document as the higher level (super-ordinate to the SRS)

governing document for our device or system. Its content includes the purpose of the device, as well as a set

Figure 10 Example PRD to SRS Relationships for a hypothetical EPAT device

 A 1.7
Traceability
Matrix
Example

http://www.amazon.com/Principles-Product-Development-Flow-Generation/dp/1935401009

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

18

of features and nonfunctional requirements that describe the behavior of the system at a fairly high level.

Features are primary elements of our agile requirements model, as Figure 11 illustrates:

Since features are implemented by stories and stories are unit tested, acceptance tested and validated by the

product owner, the question arises as to whether or not features must be independently tested as well. As

implied by the model, the answer is yes, because:

 It can take a large number of stories to implement a single feature. Even if they all deliver value, the

aggregate behavior must still be assessed.

 There are a large number of paths through the stories, which cannot be naturally tested by the

independent story acceptance tests.

 Features often require integration with other systems components and features, and in many cases a

single team may not even be able to access the resources necessary to fully test the feature they

contributed to.

Therefore, each time a new feature from the PRD is implemented a Feature Acceptance Test (FAT) must

typically be developed and persisted in the system level regression test repository. These feature tests are in

addition to the story implementations and story tests, Whenever these tests are automated, typically with

some custom, business logic-level, FIT-like toolset (Framework for Integrated Tests), the FATs can be

executed continuously in the course of each iteration. Where automation is not possible, then these tests tend

to build overhead, or technical debt, that must be executed at least at each system increment. Running the

full set of feature regression tests, including all manual tests, is an integral part of system validation.

Caution should be taken here with identifying too many manual tests. To achieve the benefits of continuous

integration in agile at all levels of the system and it sub systems, need to think about every way possible to

automate testing. This will ensure that all testing and regression testing can be easily completed for each

iteration and release without wasteful time delays. As teams transition to agile, need to think about the

transition to continuous integration with automation testing and building a regression test suite.

The goal for the agile team is to ultimately have an environment where each and every change is submitted

to the master repository and tested via the regression test suite. This will help the team achieve continuous

integration. In addition, continuous integration is coupled with continuous V&V as the V&V activities are

performed with each change submitted to the master repository to ensure all regulatory standards are adhered

Figure 11 Features and Feature Acceptance Tests in the requirements
metamodel

http://en.wikipedia.org/wiki/Acceptance_testing

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

19

to. Furthermore, this is coupled with continuous improvement as the team makes changes to the product, the

team learns how to continuously improve the product and their process through inspection and adaption.

Figure 12 below depicts how the team will continuously and iteratively develop the product with

requirements, design, test, code many times within an iteration cycle. Note that the goal is to write

automated tests before coding as the team transitions to Test Driven Development. The figure also depicts at

the same time working towards continuous unit, integration, system and product testing. This shift will

greatly help the team meet the goal of a PSI (potentially shippable increment) at the end of the iteration. The

idea on continuous integration, V&V and improvement is the cornerstone of why agile is such a great

methodology for high assurance environments. It breaks all of the regulatory requirements down to small

activities so that the quality of those activities is more effectively met and in the end produces the highest

quality product that has the highest value to the customer.

The concept and success of high quality with continuous iteration, integration and V&V is to do a little bit of

everything all the time during product development. This gets away from the large bundling of the product

for V&V and testing, as depicted in the V Model in Figure 4, that can be more prone to higher defect rates

and actually less V&V rigor due to the large product bundle.

Figure 12 Continuous Iteration with Continuous Integration Flow

Testing Nonfunctional Requirements

In Agile Software Requirements, [Leffingwell 2011] I described nonfunctional requirements as the “URPS”

part of our “FURPS” (Functionality, Usability, Reliability, Performance and Supportability) requirements

categorization acronym and noted the following discriminators:

Usability – Includes elements such as expected training times, task times, number of control

activities required to accomplish a function, help systems, compliance with usability standards,

usability safety features

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

20

Reliability – includes such things as availability, mean time between failures (MTBF), mean time to

repair (MTTR), accuracy, precision, security, safety and override features

Performance – response time, throughput, capacity, scalability, degradation modes, resource

utilization.

Supportability (Maintainability) – ability of the software to be easily modified to accommodate

planned enhancements and repairs

In addition, Design Constraints can also be particularly relevant in the development of high assurance

systems. These can refer to items such as: follow all internal processes per the companies

Quality Management System, and code must adhere to IEC 60601-1 safety standards.

No matter their nature or source, these requirements are just as critical as the functional requirements we

have described in the PRD and user story-based SRS. If a system isn’t reliable (becomes unavailable on

occasion) or marketable (fails to meet our regulatory requirements) or isn’t as accurate as the patient/user

requires, then, Agile or not, we will fail just as badly as if we forgot some critical functional requirement.

As seen in the Figure 13 below, we modeled NFRs as constraints on new development, since many of these

must be revisited at every increment to make sure the system — with all its new features — still meets this

set of imposed quality requirements.

To assure that the system works as intended, most identified NFRs must typically be associated with some

System Qualities Test used to validate that the system is still in compliance with that specific NFR. Testing

these requirements is different from testing functional system requirements, for example:

 some can be tested by inspection only. Example: all included software components must
be validated

 some must be tested with special harnessing or equipment, which may not be practical in each

iteration. Example: application pressure must be accurate to within +/50

millibars across the entire operating range.

 some require continuous reasoning and analysis each time the system behavior changes (at each

increment). Example: adhere to IEC 60601-1 device safety

standard.

Because the testing of many NFRs is simply not automatable, some amount of manual

NFR testing is left to the validation sprint. If the items can be automated, all the better,

but either way, comprehensive regression testing (and documentation of results) of these

system qualities is an integral part of the validation process.

Finalizing Documents

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

21

If an increment is intended for use in any actual user scenario — and after all, that is the intent — then the

Device History records, including the PRD and SRS documents, tests and test results, etc., will need to be

updated and finalized. This may include final content updates, exports as necessary, reformatting, and

entering into the enterprise’s document management system. There they can be logged and signed by the

appropriate authorities and persisted for as long as that version of the system is subject to actual use. This

documentation will serve as the objective evidence to satisfy the regulatory requirements.

Finalizing Traceability Matrices

In a like manner, traceability matrices must be updated, logged, signed and persisted in the device history

files as well. This will include the traceability paths we have described above — including PRS to SRS, PRD

to Feature Acceptance Test, User Story (SRS) to code, unit test and Story Acceptance Test, Nonfunctional

Requirements to System Qualities Tests, and tracing tests that fail to defects — as well as any other such

traceability relationships required by the companies Quality Management System. Having these traceability

matrices is key in tracking objective evidence to meet regulatory requirements for verification and validation

of requirements through the system from PRD to SRS to test that were executed for all requirements. The

traceability depicted in the appendices supports the required traceability of the artifacts in the system that

will serve as objective evidence.

Conclusion

Driven by quantified improvements in productivity, quality and employee morale, Agile software

development methods are making their way into one of the last bastions of waterfall development, those

industries developing high assurance software where the cost of defects and solution failures is unacceptably

high.

We analyzed one industry example, looking at the regulations and guidance associated with the development

of medical devices under the auspices of the US FDA. Perhaps surprisingly to some, we have confirmed that

current regulatory advice that dates back more then a decade, does not mandate waterfall development.

Rather, many of these guidance documents counsel the industry away from waterfall development and

towards concurrent engineering. We also highlighted the mandated requirement for software verification and

validation, and how in turn, effective V&V is dependent on maintaining correct and specific requirements

documents, including software requirements specifications, product requirements documents, and

traceability matrices.

For many, the state of the art for concurrent engineering in software development is based on Agile methods.

In reviewing those methods, we put to rest another myth, that Agile development is loose, unstructured and

is not necessarily based on a solid understanding of the exact system behavior a solution must deliver. To

that end, we have suggested ways of doing Agile development in high assurance settings, focusing on short

development increments with continuous verification, followed by validation iterations intended primarily to

finalize solution testing and update the required documentation, including SRS, PRD and traceability

matrices. We also shared examples — many provided by companies working in these environments today —

as to how effective Agile tooling, from Rally Software and others, can support the documentation and

verification and validation needs of high assurance development, while still enabling the team’s day to day

development activities to be based on proven Agile practices.

By illustrating these practical approaches to applying Agile methods in the high assurance context, we seek

to help our industries deliver ever-higher quality safety, security and efficacy to our users. In turn, those

enterprises with the courage to apply these methods can expect to gain the economic, enterprise and societal

benefits available to those leaders who deliver the best products, and do so in the most efficient manner.

This will lead high assurance companies to more competitive pricing and with decreased time to market for

their products. Agile methods is the preferred methodology to achieve continuous integration that strives for

zero-defect delivery of the highest quality products with the highest value to the customer. Automation and

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

22

tool usage is not a nice to have for high assurance companies, it is mandatory to achieve continuous

integration as well as to satisfy the regulatory requirements for proper collection of objective evidence. This

can be attained with the rigor and accountability required to meet regulatory standards in agile and with

tooling coupled with the constant flow of communication within agile teams to be honest and transparent.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

23

Bibliography

Abbot Laboratories and AgileTek. 2009. Adopting Agile in an FDA regulated Environment. Agile 2009

Conference Whitepaper. IEEE Computer Society, 978-0-7695-3768-9/09. Available online at

http://www.computer.org/portal/web/csdl/doi/10.1109/AGILE.2009.50.

FDA documents available online at http://www.fda.gov/.

CFR - Code of Federal Regulations Title 21.

CFR 21 PART 820 – Quality System regulation

CFR 21 Subpart C – Design Controls. Subpart C, Sec. 820.30 – Design controls.

General Principles of Software Validation; Final Guidance for Industry and FDA Staff. 1997. Center

for Devices and Radiological Health (CDRH).

Design Control Guidance for Medical Device Manufacturers. 1997. CDRH.

FDA Glossary of Computer Systems Software Development Terminology

Leffingwell, Dean. 2011. Agile Software Requirements: Lean Requirements Practices for Teams, Programs,

and the Enterprise. Boston, MA: Addison-Wesley.

Leffingwell, Dean. 2007. Scaling Software Agility: Best Practices for Large Enterprises. Boston, MA:

Addison-Wesley.

Leffingwell, Dean, and Don Widrig. 2003. Managing Software Requirements, Second Edition: A Use Case

Approach. Boston, MA: Addison-Wesley.

Leffingwell, Dean, and Don Widrig. 2000. Managing Software Requirements: A Unified Approach. Boston,

MA: Addison-Wesley.

Reinertsen, Donald G. 2009. The Principles of Product Development Flow: Second Generation Lean

Product Development. Redondo Beach, CA: Celeritas Publishing.

About the Author

Dean Leffingwell is a renowned entrepreneur, software executive, consultant and

author. Mr. Leffingwell founded or cofounded a number of companies including

medical equipment company RELA/Colorado Medtech, software tools maker

Requisite, Inc., now part of IBM’s Rational Division, and most recently, Scaled Agile,

Inc. Mr. Leffingwell formerly served as chief methodologist to Rally Software and,

before that, as Vice President of Rational Software, now IBM’s Rational Division,

where his responsibilities included the Rational Unified Process.

Mr. Leffingwell has been a student, coach and author of contemporary software engineering and

management practices throughout his career. His most recent project is the ScaledAgileFramework.com. His

books include Agile Software Requirements: Lean Requirements Practices for Teams, Programs, and the

Enterprise (Addison-Wesley 2011) and Scaling Software Agility: Best Practices for Large Enterprises

(Addison-Wesley 2007). He is also lead author of the texts Managing Software Requirements: First and

Second Editions, which have been translated into five languages.

http://www.computer.org/portal/web/csdl/doi/10.1109/AGILE.2009.50

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

24

About the Primary Contributor

Craig Langenfeld is a Product Ambassador for Rally Software. Since 2000, Craig

has held such titles as developer, project manager, instructor, ScrumMaster, tool

expert, and friend to those who are driving organizational change and seeking better

ways to deliver software. Recently he has focused his efforts on building a

community and sharing best practices for Agile software development within high

assurance industries. He is also passionate about scaling Agile practices and tooling

within large enterprises.

Yvonne Kish is an Agile Coach with Rally Software in Boulder, CO. Yvonne

started her career in software engineering as a software developer. She transitioned

to software roles where she could interact more with the software development

process as a whole. She has held positions as a software configuration manager,

software quality assurance engineer and manager, process improvement consultant,

and Agile coach. She has experience in many high assurance type areas including

the DoD, FAA, and FDA.

Yvonne is passionate about helping companies use Agile to ultimately produce

higher quality products that successfully meet customer regulatory requirements.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

25

Appendix

This appendix highlights examples of using Rally Software’s Agile Lifecycle Management platform, often in

conjunction with other products such as Subversion and HP’s Quality Center, to support the documentation,

verification, validation, and traceability needs of high assurance software development, while still driving

fundamental Agile development practices for the teams day to day development activities. A special thanks

to Craig Langenfeld of Rally Software for developing many of these examples, and collecting others from

practitioners doing this actual work in the field today.

Figure A 1.1 – Feature set represented in Rally

In the screen shot above we show a PRD, in this case “EPAT Device Enhancement”, represented by a

parent user story in Rally. The indented rows beneath the parent story represent child stories or what Dean

Leffingwell describes as the SRS level in the hierarchy. Rally offers a robust user story hierarchy that

decomposes n-levels deep to easily support the requirements structure that is referred to in this writing.

Traceability in Rally provides ability to build relationships between stories in the hierarchy and rollup data

from child stories and development tasks to parent stories. Information such as state progress and plan

estimates become visible across the hierarchy. Additionally, Rally provides strong reporting capabilities

across multi level hierarchy of decomposed stories.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

26

Figure A 1.2 – Rally Iteration Status View

Rally’s Iteration Status view, shown above, guides teams to meet their commitments by providing clear

visibility to define|build|test activities throughout the Iteration. This example shows a team that has planned

three user stories for Iteration 2. The team defined their work by decomposing the stories into tasks and is

able to track their effort against those tasks.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

27

Figure A 1.3 – User Story detail view highlights traceable relationships

In this whitepaper, we have highlighted the importance of User Story to Acceptance Test Case traceability
in high assurance environments, but we have not yet highlighted the importance of other artifacts like
defects, changesets, and revisions. Rally’s unique User Story detail view provides clear visibility to how
many defects are associated to this story, what the test coverage is, what changesets are associated, and
an audit trail for revision information.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

28

Figure A 1.4 – User Story to Code Traceability

Above is a simple example of using user stories and tasks to create a traceability path. In this case we show

a single User Story that has four tasks, including “TA4 Code prototype for rarefaction”. Having a tight

association between a user story and the actual coding tasks that implement it is critical in high assurance

environments. The status of the User Story is directly rolled up from the status of the connected tasks

ensuring that changes to tasks trace to the User Story in real-time.

In addition, Rally’s integration with SVN automates the traceability between a code revision and a Rally

task. In the example above, a custom Iteration Diff Report has been created to report on all files that were

changed during an Iteration. The Iteration Diff Report is a Rally App example that was created using Rally’s

App Development Platform.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

29

Figure A 1.5 – User Story to Acceptance Tests in Rally

User Story Acceptance Tests (SAT) are functional tests intended to assure that the implementation of each

new user story delivers the expected behavior. In a regulated environment it is often referred to as

verification testing. Above is a screen capture from Rally showing four verification test cases, and their

results, associated to a user story. Having clear visibility from the user story to the verification test case is

critical for Agile teams as they work through an Iteration.

The screen capture above shows another view of the User Story Acceptance Tests in context of the User

Story they trace to.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

30

Figure A 1.6 – User Story to Acceptance Test Traceability (Rally and Quality Center)

Above screenshot shows a test plan view in QC, which displays four User Story Acceptance Test Cases that

have been defined for the Ultrasound 2000X machine. In this example, the detail of the highlighted test case

has a Rally Story ID field. Populating this field and running the Rally/QC connector allows us to

synchronize this set of test cases with Rally.

The screen capture above displays the same four test cases that were created and ran in QC as Rally Test

Cases associated with a Rally User Story. The test cases were created in Rally by the Rally/QC connector

and their results will be updated each time they are run from QC. Having this tight association between User

Stories and Test Cases is required for visibility, traceability and assurance.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

31

Figure A 1.7 – Validation Requirements Traceability Matrix Example

Guidances like, General Principles of Software Validation; Final Guidance for Industry and FDA Staff,

strongly suggest that medical device manufacturers should produce traceability matrices as a validation

design output artifact. As Dean Leffingwell explains, traceability matrices provide evidence to stakeholders

that we traced the intent of the system, to the design, to the quality of the system. The figure above shows

how Rally can be extended to create a custom traceability matrix displaying the traceability from PRD to

SRS and even further into test cases and test results. Automating the production of artifacts like the

traceability matrix is key for Agile teams which work in shorter release cycles.

Agile Software Development with Verification and Validation in High Assurance and Regulated Environments

 © 2011-2014 Leffingwell, LLC. and Rally Software Development Corporation

32

Figure A 1.8 – Product Requirements Document Export from Rally

As Dean describes above, in high assurance software development we will need to format our user

stories, test cases and results, and defects in a way that they can be easily exported to represent that the
intended feature was built to its specification. Above is an example of a Product Requirements Document
that was created using Rally’s App SDK and can be added to Rally via the App Catalog. Generated
documents can be exported for formal signoff and storage in a document repository. Having an automated
mechanism for creating artifacts like a PRD are key in a fast moving Agile Lifecycle.

